Formula:
, where n ≠ –1
, wheren = –1
, where
Integration of the powers of sine and cosine functions
- Case 1. Has the form ∫sinnax cosax dx. I believe this is the basic and the easiest to evaluate because of the presence of the cosine.
- Case 2. Has the form ∫cosnax sinax dx. In this case instead sine, the one with the exponent is the cosine and it is a lot easier to evaluate because of the presence of sine.
- Case 3. Has the form ∫sinmax cosnax dx where m is odd integer. The first step is to factor sin x, then change the remaining factor into sin2ax = 1 - cos2ax.
- Case 4. Has the form ∫sinmax cosnax dx where n is odd integer. Here we can factor cos x, then change the remaining factor into cos2ax = 1 - sin2ax.
- Case 5. Has the form ∫sinmax cosnax dx where m and n are even integers. In this case we will be using the half-angle identities below.
- Case 6. Has the form ∫sinaxcosbx dx, ∫sinaxsinbx dx, ∫cosaxcosbx dx. To find the integrals for this kind of combination of trigonometric functions, we will be needing the identities below.
Examples 1: ∫sin53x cos3x dx
Solution: Let u = sin3x, du = 3cos3x dx
=
=
Examples 2: ∫cos34x sin4x dx
Solution: Let u = cos4x, du = -4sin4x dx
=
=
Examples 3:
∫sin33x dx = ∫sin23x ∙ sin3x dx
= ∫(1 - cos23x) sin3x dx
= ∫sin3x dx - ∫cos23x sin3x dx
=
Examples 4: = ∫(1 - cos23x) sin3x dx
= ∫sin3x dx - ∫cos23x sin3x dx
=
∫sin52x cos22x dx = ∫sin42x ∙ sin2x cos22x dx
= ∫(sin22x)2 cos22x sin2x dx
= ∫(1 - cos22x)2 cos22x sin2x dx
= ∫(1 - 2cos22x + cos42x) cos22x sin2x dx
= ∫cos22x sin2x dx - 2∫cos42x sin2x dx + ∫cos62x sin2x dx
Let u = cos2x, du = -2sin2x dx
=
= ∫(sin22x)2 cos22x sin2x dx
= ∫(1 - cos22x)2 cos22x sin2x dx
= ∫(1 - 2cos22x + cos42x) cos22x sin2x dx
= ∫cos22x sin2x dx - 2∫cos42x sin2x dx + ∫cos62x sin2x dx
Let u = cos2x, du = -2sin2x dx
=
Examples 5:
∫cos34x dx = ∫cos24x ∙ cos4x dx
= ∫(1 - sin24x) cos4x dx
= ∫cos4x dx - ∫sin24x cos4x dx
=
= ∫(1 - sin24x) cos4x dx
= ∫cos4x dx - ∫sin24x cos4x dx
=
Examples 6:
∫sin2x cos3x dx = ∫sin2x cos2x ∙ cosx dx
= ∫sin2x (1 - sin2x) cosx dx
= ∫(sin2x - sin4x) cosx dx
Let u = sinx, du = cosx dx
=
= ∫sin2x (1 - sin2x) cosx dx
= ∫(sin2x - sin4x) cosx dx
Let u = sinx, du = cosx dx
=
and
Examples 7:
∫sin2x dx = ½∫(1 - cos2x)dx
= ½∫dx - ½∫cos2x dx
=
= ½∫dx - ½∫cos2x dx
=
Examples 8:
∫sin2x cos2x dx = ∫½(1 - cos2x)½(1 + cos2x) dx
= ¼∫(1 - cos22x) dx
= ¼∫[1 - ½(1 + cos4x)] dx
= ⅛∫(1 - cos4x) dx
=
= ¼∫(1 - cos22x) dx
= ¼∫[1 - ½(1 + cos4x)] dx
= ⅛∫(1 - cos4x) dx
=
Examples 9:
∫sin6xcos3x dx = ½∫(sin9x + sin3x) dx
= ½∫sin9x dx + ½∫sin3x dx
=
= ½∫sin9x dx + ½∫sin3x dx
=
Examples 10:
∫sin5xsin2x dx = ½∫(cos3x - cos7x) dx
= ½∫cos3x dx - ½∫cos7x dx
=
= ½∫cos3x dx - ½∫cos7x dx
=
Integration of the powers of tangent and secant functions
- Case 1. Has the form ∫tanmu secnu du. In this case, when m is odd factor out sec u tan u du and change the remaining tangent into secant using the identity, tan2u = sec2u - 1.
- Case 2. Has the form ∫tanmu secnu du. When n is even greater than 2, factor out sec2u du and replace the remaining secant by tangent using the identity, sec2u = 1 + tan2u.
- Case 3. Has the form ∫tanmu secnu du. When m is even the integrand is tangent only use the identity, tan2u = sec2u - 1.
Examples 11:
∫tan3x sec3x dx = ∫tan2x sec2x ∙ secx tanx dx
= ∫(sec2x - 1)sec2x ∙ secx tanx dx
= ∫(sec4x - sec2x)secx tanx dx
Let u = secx, du = secx tanx dx
= ∫ u4 du - u2 du
=
= ∫(sec2x - 1)sec2x ∙ secx tanx dx
= ∫(sec4x - sec2x)secx tanx dx
Let u = secx, du = secx tanx dx
= ∫ u4 du - u2 du
=
Examples 12:
∫tan5x sec4x dx = ∫tan5x sec2x ∙ sec2x dx
= ∫tan5x(1 + tan2x)sec2x dx
= ∫tan5x sec2x dx + ∫tan7x sec2x dx
Let u = tanx, du = sec2x dx
= ∫ u5 du + u7 du
=
= ∫tan5x(1 + tan2x)sec2x dx
= ∫tan5x sec2x dx + ∫tan7x sec2x dx
Let u = tanx, du = sec2x dx
= ∫ u5 du + u7 du
=
Examples 13:
∫tan4x dx = ∫tan2x ∙(sec2x - 1) dx
= ∫tan2x sec2x dx - ∫tan2x dx
= ∫tan2x sec2x dx - ∫(sec2x - 1) dx
Let u = tanx, du = sec2x dx
= ∫u2 du - ∫du + ∫dx
=
= ∫tan2x sec2x dx - ∫tan2x dx
= ∫tan2x sec2x dx - ∫(sec2x - 1) dx
Let u = tanx, du = sec2x dx
= ∫u2 du - ∫du + ∫dx
=
Integration of the powers of cotangent and Cosecant functions
- Case 1. Has the form ∫cotmu cscnu du. When m is odd, factor out csc u cot u du and change the remaining cotangent into cosecant using the identity, cot2u = csc2u - 1.
- Case 2. Has the form ∫cotmu cscnu du. When n is even greater than 2, factor out csc2u du and replace the remaining cosecant by cotangent using the identity, csc2u = 1 + cot2u.
Examples 14:
∫cot32x csc32x dx = ∫cot22x csc22x ∙ (cot2x csc2x dx)
= ∫(csc22x - 1)csc22x ∙ cot2x csc2x dx
= ∫(csc42x - csc22x)cot2x csc2x dx
Let u = csc2x, du = -2csc2x cot2x dx
= -½∫u4 du + ½∫u2 du
=
= ∫(csc22x - 1)csc22x ∙ cot2x csc2x dx
= ∫(csc42x - csc22x)cot2x csc2x dx
Let u = csc2x, du = -2csc2x cot2x dx
= -½∫u4 du + ½∫u2 du
=
Examples 15:
∫cot4x csc4x dx = ∫cot4x csc2x ∙ csc2x dx
= ∫cot4x(1 + cot2x) csc2x dx
= ∫(cot4x + cot6x) csc2x dx
Let u = cotx, du = -csc2x dx
= -∫u4 du - ∫u6 du
=
= ∫cot4x(1 + cot2x) csc2x dx
= ∫(cot4x + cot6x) csc2x dx
Let u = cotx, du = -csc2x dx
= -∫u4 du - ∫u6 du
=
©2013 www.PinoyBIX.com
Post a Comment