PROPERTIES OF REAL NUMBERS
1. Closure Property
Addition : a + b
Multiplication : a · b
2. Commutative Property
Addition : a + b = b + a
: 4m + n2 = n2 + 4m
Multiplication : ab = ba
: (m – 3)n2 = n2(m – 3)
3. Associative Property of Addition
Addition : (a + b) + c = a + (b + c)
: (m + 12) + 3n2 = m + (12 + 3n2)
Multiplication : (ab)c = a(bc)
: (4m · 3n)6 = 4m(3n · 6)
4. Distributive Property
Right Distributive : a(b + c) = ab + ac
: n(m + 9) = mn + 9n
Left Distributive : (a + b)c = ac + bc
: (m + 9)n = mn + 9n
5. Additive Identity Property
a + 0 = a : 4m2 + 0 = 4m2
6. Multiplicative Identity Property
a · 1 = 1 · a = a : (5m2)(1) = (1)(5m2) = 5m2
7. Additive Inverse Property
a + (-a) = 0 : 7m2 + (-7m2) = 0
8. Multiplicative Inverse Property
a · 1/a = 1, a ≠ 0 : (3m2 + 4) [1 / (3m2 + 4)] = 1
PROPERTIES OF EQUALITY
1. Reflexive Property
a = a
2. Symmetric Property
If a = b, then b = a
3. Transitive Property
If a = b, and b = c, then a = c
4. Addition Property
If a = b, then a + c = b + c
5. Subtraction Property
If a = b, then a – c = = b – c
6. Substitution Property
If a = b, then a can be replaced by b in any expression involving a.
7. Multiplicative Property
If a = b, then ac = bc
8. Division Property
If a = b, then a/c = b/c, with c ≠ 0
9. Cancellation Property
If a + c = b + c, then a = b
If ac = bc, then a = b, provided c ≠ 0
OPERATIONS WITH ZERO AND INFINITY
1. a + 0 = a
2. a – 0 = a
3. a(0) = 0
4. 0/a = 0
5. a/∞ = 0
6. 0a = 0
7. a(∞) = ∞
8. a/0 = undefined
9. ∞/a = ∞
10. a0 = 1, a ≠ 0
Post a Comment